Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 3,5-dimethyl-1H-pyrrole-2carboxvlate

Cláudia T. Arranja,^a Manuela Ramos Silva,^{b*} Ana Matos Beja,^b Ana F. P. V. Ferreira^a and Abílio J. F. N. Sobral^a

^aChemistry Department, University of Coimbra, P-3004-535 Coimbra, Portugal, and ^bCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal

Correspondence e-mail: manuela@pollux.fis.uc.pt

Received 15 September 2008; accepted 17 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.182; data-to-parameter ratio = 20.0.

In the title compound, $C_9H_{13}NO_2$, there are two independent molecules per asymmetric unit. The molecules are very similar and almost planar, with the ethoxycarbonyl group anti to the pyrrole N atom. The two independent molecules are joined into dimeric units by strong hydrogen bonds between NH groups and carbonyl O atoms.

Related literature

For general background, see: Bonnett (1995, 2000). For related structures, see: Paixão et al. (2002), Ramos Silva et al. (2002); Sobral & Rocha Gonsalves (2001).

Experimental

Crystal data

c = 12.1428 (2) Å
$\alpha = 101.5451 \ (13)^{\circ}$
$\beta = 97.8791 \ (14)^{\circ}$
$\gamma = 110.4821 \ (14)^{\circ}$
$V = 932.52 (4) \text{ Å}^3$

Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker APEX CCD area-detector	20370 measured reflections
diffractometer	4456 independent reflections
Absorption correction: multi-scan	2368 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2000)	$R_{\rm int} = 0.028$
$T_{\min} = 0.899, \ T_{\max} = 0.987$	

Refinement

I

N N

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.182$ S = 1.034456 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
V1−H1···O4	0.86	2.02	2.857 (2)	166
V2−H2···O2	0.86	2.00	2.834 (2)	163

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/AMB/55281/2004.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2791).

References

- Bonnett, R. (1995). Chem. Soc. Rev. 24, 19-33.
- Bonnett, R. (2000). Chemical Aspects of Photodynamic Therapy. Amsterdam: Gordon and Breach Science Publishers.
- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Paixão, J. A., Ramos Silva, M., Matos Beja, A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d'A. (2002). Acta Cryst. C58, 0721-0723.
- Ramos Silva, M., Matos Beja, A., Paixão, J. A., Sobral, A. J. F. N., Lopes, S. H. & Rocha Gonsalves, A. M. d'A. (2002). Acta Cryst. C58, 0572-0574.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sobral, A. J. F. N. & Rocha Gonsalves, A. M. d'A. (2001). J. Porphyrins Phthalocyanines, 5, 861-866.

with $I > 2\sigma(I)$

T = 293 (2) K

223 parameters

 $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min}$ = -0.21 e Å⁻³

H-atom parameters constrained

 $0.25 \times 0.20 \times 0.15 \text{ mm}$

supplementary materials

Acta Cryst. (2008). E64, o1989 [doi:10.1107/S1600536808029929]

Ethyl 3,5-dimethyl-1*H*-pyrrole-2-carboxylate

C. T. Arranja, M. Ramos Silva, A. Matos Beja, A. F. P. V. Ferreira and A. J. F. N. Sobral

Comment

Photodynamic therapy (PDT) is a developing method for the treatment of carcinomas and sarcomas. It consists in a selective absorption of a photosensitizer in a tumor, followed by irradiation with light of a selected wavelength, originating tumor necrosis. The fewer side effects of this therapeutic method when compared to chemotherapy and radiotherapy have prompted the search for new and more efficient photosensitizers, namely porphyrins (Bonnett, 1995, 2000). Pyrroles are building blocks for the synthesis of porphyrins and following our previous structural studies on pyrrole chemistry (Sobral & Rocha Gonsalves, 2001; Ramos Silva *et al.*, 2002; Paixão *et al.*, 2002) we present here the title compound ethyl 3,5-dimethyl-1*H*-pyrrole-2-carboxylate, (I), Fig. 1. There are two independent molecules per asymmetric unit. The two molecules are very similar and almost planar with the angle between molecular planes being 3.87 (5)°. The molecules show an eclipsed conformation, when viewed along the C1—C7 direction, with the ethoxycarbonylgroup anti to the pyrrole N atom. The molecules are grouped in dimers by strong hydrogen bonds between N—H groups and carbonyl O atoms (Fig.1, Table 1). The dimers stack in planes approximately 5 Å apart (Fig.2).

Experimental

The ethyl 3,5-dimethyl-1*H*-pyrrole-2-carboxylate was prepared by a Knorr-type reaction from the condensation of acetylacetone and ethyl oximinoacetoacetate.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H=0.93 Å, N—H=0.86 Å, $U_{iso}(H)=1.2U_{eq}(C,N)$.

Figures

Fig. 1. *ORTEPII* (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level. The H-bonds are represented as dashed lines.

Fig. 2. Packing diagram of the title compound.

Ethyl 3,5-dimethyl-1*H*-pyrrole-2-carboxylate

Crystal data	
C9H13NO2	Z = 4
$M_r = 167.20$	$F_{000} = 360$
Triclinic, PT	$D_{\rm x} = 1.191 {\rm Mg m}^{-3}$
a = 8.1357 (2) Å	Mo K α radiation $\lambda = 0.71073$ Å
b = 10.5568 (2) Å	Cell parameters from 3873 reflections
c = 12.1428 (2) Å	$\theta = 2.4 - 23.9^{\circ}$
$\alpha = 101.5451 \ (13)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 97.8791 \ (14)^{\circ}$	T = 293 (2) K
$\gamma = 110.4821 \ (14)^{\circ}$	Prism, colourless
$V = 932.52 (4) \text{ Å}^3$	$0.25\times0.20\times0.15~mm$

Data collection

Bruker APEX CCD area-detector diffractometer	4456 independent reflections
Radiation source: fine-focus sealed tube	2368 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 293(2) K	$\theta_{\text{max}} = 28.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)	$h = -10 \rightarrow 10$
$T_{\min} = 0.899, T_{\max} = 0.987$	$k = -13 \rightarrow 13$
20370 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.182$	$w = 1/[\sigma^2(F_o^2) + (0.0939P)^2 + 0.0508P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
4456 reflections	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
223 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

C14

-0.3308(3)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y N1 0.0526 (4) 0.2122 (2) 0.18401 (15) 0.96119 (12) H1 0.1472 0.1689 0.8941 0.063* C1 0.2894 (2) 0.0483 (4) 0.31179 (18) 1.04326 (14) C2 1.13867 (15) 0.3837(3)0.29357 (19) 0.0535(5)C3 0.3587 (3) 0.1515 (2) 1.11083 (17) 0.0620(5) H3 0.1083 0.074* 0.4060 1.1589 C4 0.2537 (3) 0.08658 (19) 1.00165 (17) 0.0561(5)C5 0.1877 (3) 0.92988 (19) -0.0621(2)0.0745 (6) H5A 0.0653 -0.09120.8891 0.112* H5B 0.1938 -0.12180.9790 0.112* H5C 0.2617 -0.06840.8756 0.112* C6 0.4927 (3) 0.4029(2)1.24868 (16) 0.0700 (6) H6A 0.5941 0.4716 1.2331 0.105* H6B 0.5346 0.3594 1.3024 0.105* 0.4193 H6C 0.4476 1.2810 0.105* C7 0.2626 (2) 0.43124 (19) 1.01696 (15) 0.0497 (4) C8 0.3246 (3) 0.67311 (19) 1.08651 (16) 0.0598 (5) H8A 0.1987 0.6598 1.0744 0.072* H8B 0.3685 0.6956 1.0196 0.072* C9 1.19379 (19) 0.4325 (3) 0.7891 (2) 0.0736 (6) 0.110* H9A 0.3901 0.7642 1.2595 H9B 0.4191 0.8742 1.1869 0.110* H9C 0.5573 0.8030 1.2035 0.110* 01 0.34589 (17) 0.54785 (12) 1.10374 (10) 0.0571 (4) O2 0.1739(2) 0.42886 (14) 0.92727 (11) 0.0697 (4) N2 -0.03335(19)0.33131 (15) 0.69754 (12) 0.0514 (4) H2 0.0341 0.3455 0.7635 0.062* C10 0.43124 (19) -0.0692(3)0.65748 (16) 0.0532 (5) C11 -0.1793(3)0.3672 (2) 0.54923 (17) 0.0581 (5) H11 -0.22370.4120 0.5012 0.070* C12 -0.2140(2)0.22325 (19) 0.52282 (15) 0.0511 (5) C13 -0.1210(2)0.20295 (18) 0.61697 (14) 0.0470 (4)

0.1161(2)

0.41335 (16)

0.0666 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H14A	-0.2676	0.0606	0.3829	0.100*
H14B	-0.3600	0.1628	0.3580	0.100*
H14C	-0.4397	0.0564	0.4290	0.100*
C15	0.0049 (3)	0.58075 (19)	0.72855 (18)	0.0681 (6)
H15A	-0.0667	0.5910	0.7837	0.102*
H15B	0.0018	0.6407	0.6791	0.102*
H15C	0.1270	0.6063	0.7684	0.102*
C16	-0.1000 (3)	0.08222 (19)	0.64427 (15)	0.0525 (5)
C17	-0.1825 (3)	-0.16323 (19)	0.58381 (18)	0.0635 (5)
H17A	-0.2223	-0.1772	0.6538	0.076*
H17B	-0.0591	-0.1565	0.5933	0.076*
C18	-0.3012 (3)	-0.2831 (2)	0.4826 (2)	0.0777 (7)
H18A	-0.4226	-0.2880	0.4734	0.116*
H18B	-0.2979	-0.3691	0.4953	0.116*
H18C	-0.2593	-0.2690	0.4141	0.116*
O3	-0.19388 (17)	-0.03673 (13)	0.56183 (10)	0.0574 (4)
O4	-0.0063 (2)	0.08520 (14)	0.73228 (12)	0.0806 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0640 (10)	0.0477 (9)	0.0397 (8)	0.0212 (8)	0.0025 (7)	0.0053 (7)
C1	0.0532 (10)	0.0434 (10)	0.0407 (9)	0.0155 (8)	0.0037 (8)	0.0055 (8)
C2	0.0575 (11)	0.0533 (11)	0.0445 (10)	0.0198 (9)	0.0041 (8)	0.0099 (8)
C3	0.0759 (14)	0.0568 (12)	0.0565 (12)	0.0307 (11)	0.0067 (10)	0.0189 (10)
C4	0.0674 (12)	0.0478 (11)	0.0552 (11)	0.0256 (9)	0.0123 (9)	0.0133 (9)
C5	0.0935 (16)	0.0467 (12)	0.0772 (15)	0.0282 (11)	0.0119 (12)	0.0069 (10)
C6	0.0797 (15)	0.0690 (14)	0.0472 (11)	0.0236 (11)	-0.0088 (10)	0.0103 (10)
C7	0.0534 (11)	0.0470 (11)	0.0408 (10)	0.0160 (8)	0.0037 (8)	0.0059 (8)
C8	0.0741 (13)	0.0482 (11)	0.0566 (12)	0.0256 (10)	0.0108 (10)	0.0124 (9)
C9	0.0911 (16)	0.0509 (12)	0.0669 (14)	0.0229 (11)	0.0142 (12)	0.0014 (10)
01	0.0726 (9)	0.0436 (7)	0.0455 (7)	0.0207 (6)	-0.0015 (6)	0.0050 (6)
O2	0.0918 (11)	0.0559 (8)	0.0498 (8)	0.0314 (8)	-0.0130 (7)	0.0039 (6)
N2	0.0561 (9)	0.0459 (9)	0.0428 (8)	0.0157 (7)	0.0011 (7)	0.0061 (7)
C10	0.0583 (11)	0.0456 (11)	0.0535 (11)	0.0191 (9)	0.0097 (9)	0.0126 (9)
C11	0.0639 (12)	0.0531 (12)	0.0538 (11)	0.0222 (9)	0.0002 (9)	0.0166 (9)
C12	0.0511 (10)	0.0515 (11)	0.0439 (10)	0.0166 (9)	0.0035 (8)	0.0089 (8)
C13	0.0496 (10)	0.0423 (10)	0.0403 (9)	0.0133 (8)	0.0035 (8)	0.0050 (7)
C14	0.0691 (13)	0.0649 (13)	0.0491 (11)	0.0186 (11)	-0.0086 (10)	0.0081 (10)
C15	0.0796 (15)	0.0451 (12)	0.0702 (13)	0.0218 (10)	0.0066 (11)	0.0068 (10)
C16	0.0580 (11)	0.0476 (11)	0.0426 (10)	0.0169 (9)	0.0017 (9)	0.0050 (8)
C17	0.0701 (13)	0.0484 (12)	0.0643 (13)	0.0226 (10)	0.0037 (10)	0.0073 (10)
C18	0.0850 (16)	0.0475 (12)	0.0825 (16)	0.0204 (11)	0.0047 (12)	-0.0019 (11)
O3	0.0664 (8)	0.0428 (7)	0.0508 (8)	0.0179 (6)	-0.0027 (6)	0.0029 (6)
O4	0.1088 (12)	0.0548 (9)	0.0572 (9)	0.0290 (8)	-0.0237 (8)	0.0037 (7)

Geometric parameters (Å, °)

	1			
N1—C4		1.346 (2)	N2-C10	1.348 (2)

N1—C1	1.380 (2)	N2—C13	1.380 (2)
N1—H1	0.8600	N2—H2	0.8600
C1—C2	1.384 (2)	C10-C11	1.373 (3)
C1—C7	1.440 (2)	C10—C15	1.498 (2)
C2—C3	1.404 (3)	C11—C12	1.405 (2)
C2—C6	1.498 (3)	C11—H11	0.9300
C3—C4	1.369 (3)	C12—C13	1.378 (2)
С3—Н3	0.9300	C12—C14	1.500 (2)
C4—C5	1.498 (3)	C13—C16	1.438 (3)
С5—Н5А	0.9600	C14—H14A	0.9600
С5—Н5В	0.9600	C14—H14B	0.9600
С5—Н5С	0.9600	C14—H14C	0.9600
С6—Н6А	0.9600	C15—H15A	0.9600
С6—Н6В	0.9600	C15—H15B	0.9600
С6—Н6С	0.9600	C15—H15C	0.9600
С7—О2	1.212 (2)	C16—O4	1.213 (2)
C7—O1	1.336 (2)	C16—O3	1.333 (2)
C8—O1	1.443 (2)	C17—O3	1.444 (2)
C8—C9	1.504 (3)	C17—C18	1.497 (3)
C8—H8A	0.9700	C17—H17A	0.9700
C8—H8B	0.9700	С17—Н17В	0.9700
С9—Н9А	0.9600	C18—H18A	0.9600
С9—Н9В	0.9600	C18—H18B	0.9600
С9—Н9С	0.9600	C18—H18C	0.9600
C4—N1—C1	109.98 (15)	C10—N2—C13	109.89 (15)
C4—N1—H1	125.0	C10—N2—H2	125.1
C1—N1—H1	125.0	C13—N2—H2	125.1
N1—C1—C2	107.62 (15)	N2-C10-C11	107.26 (16)
N1—C1—C7	119.00 (15)	N2-C10-C15	121.47 (17)
C2—C1—C7	133.38 (16)	C11—C10—C15	131.26 (18)
C1—C2—C3	105.90 (16)	C10-C11-C12	108.90 (17)
C1—C2—C6	127.36 (17)	C10-C11-H11	125.6
C3—C2—C6	126.73 (17)	C12-C11-H11	125.6
C4—C3—C2	109.18 (17)	C13—C12—C11	106.15 (16)
С4—С3—Н3	125.4	C13—C12—C14	128.26 (17)
С2—С3—Н3	125.4	C11—C12—C14	125.59 (17)
N1—C4—C3	107.32 (16)	C12-C13-N2	107.79 (15)
N1—C4—C5	121.31 (18)	C12—C13—C16	133.95 (16)
C3—C4—C5	131.37 (19)	N2-C13-C16	118.26 (15)
С4—С5—Н5А	109.5	C12-C14-H14A	109.5
C4—C5—H5B	109.5	C12-C14-H14B	109.5
H5A—C5—H5B	109.5	H14A—C14—H14B	109.5
C4—C5—H5C	109.5	C12—C14—H14C	109.5
H5A—C5—H5C	109.5	H14A—C14—H14C	109.5
H5B—C5—H5C	109.5	H14B—C14—H14C	109.5
С2—С6—Н6А	109.5	C10—C15—H15A	109.5
С2—С6—Н6В	109.5	C10—C15—H15B	109.5
H6A—C6—H6B	109.5	H15A—C15—H15B	109.5
С2—С6—Н6С	109.5	C10—C15—H15C	109.5

supplementary materials

Н6А—С6—Н6С	109.5	H15A—C15—H15C	109.5
H6B—C6—H6C	109.5	H15B—C15—H15C	109.5
O2—C7—O1	122.56 (16)	O4—C16—O3	121.97 (17)
O2—C7—C1	124.92 (16)	O4—C16—C13	124.71 (16)
O1—C7—C1	112.52 (15)	O3—C16—C13	113.32 (15)
O1—C8—C9	106.73 (15)	O3—C17—C18	107.56 (16)
O1—C8—H8A	110.4	O3—C17—H17A	110.2
С9—С8—Н8А	110.4	C18—C17—H17A	110.2
O1—C8—H8B	110.4	O3—C17—H17B	110.2
С9—С8—Н8В	110.4	C18—C17—H17B	110.2
H8A—C8—H8B	108.6	H17A—C17—H17B	108.5
С8—С9—Н9А	109.5	C17—C18—H18A	109.5
С8—С9—Н9В	109.5	C17—C18—H18B	109.5
Н9А—С9—Н9В	109.5	H18A—C18—H18B	109.5
С8—С9—Н9С	109.5	C17—C18—H18C	109.5
Н9А—С9—Н9С	109.5	H18A—C18—H18C	109.5
Н9В—С9—Н9С	109.5	H18B—C18—H18C	109.5
C7—O1—C8	116.76 (13)	C16—O3—C17	116.64 (14)
C4—N1—C1—C2	0.3 (2)	C13—N2—C10—C11	-0.8 (2)
C4—N1—C1—C7	179.58 (15)	C13—N2—C10—C15	178.44 (16)
N1—C1—C2—C3	-0.4 (2)	N2-C10-C11-C12	0.8 (2)
C7—C1—C2—C3	-179.57 (19)	C15-C10-C11-C12	-178.28 (19)
N1-C1-C2-C6	178.72 (18)	C10-C11-C12-C13	-0.6 (2)
C7—C1—C2—C6	-0.4 (3)	C10-C11-C12-C14	179.03 (18)
C1—C2—C3—C4	0.4 (2)	C11—C12—C13—N2	0.1 (2)
C6—C2—C3—C4	-178.74 (19)	C14—C12—C13—N2	-179.49 (17)
C1—N1—C4—C3	0.0 (2)	C11-C12-C13-C16	-179.8 (2)
C1—N1—C4—C5	-179.76 (16)	C14-C12-C13-C16	0.6 (3)
C2—C3—C4—N1	-0.3 (2)	C10-N2-C13-C12	0.4 (2)
C2—C3—C4—C5	179.4 (2)	C10-N2-C13-C16	-179.68 (15)
N1—C1—C7—O2	1.0 (3)	C12-C13-C16-O4	177.7 (2)
C2—C1—C7—O2	-179.9 (2)	N2-C13-C16-O4	-2.2 (3)
N1-C1-C7-O1	-179.56 (14)	C12-C13-C16-O3	-1.7 (3)
C2—C1—C7—O1	-0.5 (3)	N2-C13-C16-O3	178.41 (15)
O2—C7—O1—C8	0.4 (3)	O4—C16—O3—C17	1.7 (3)
C1—C7—O1—C8	-178.98 (15)	C13—C16—O3—C17	-178.86 (15)
C9—C8—O1—C7	-178.86 (15)	C18—C17—O3—C16	178.37 (16)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1…O4	0.86	2.02	2.857 (2)	166
N2—H2···O2	0.86	2.00	2.834 (2)	163

Fig. 2

